

TECHNISCHES DATENBLATT

Opal Weiß 025

1. PRODUKTKENNZEICHNUNG

CRYLON® ist der Handelsname für extrudierte Polymethylmethacrylat–Tafeln der POLYCASA in Standard- und in schlagzäh modifizierter Ausführung.

Das CRYLON® – Standard und -schlagzäh modifizierte Produktangebot bietet Lösungen für Innen- und Außenanwendungen. Mit Hilfe des Plattenextrusionsverfahrens kann POLYCASA eine Vielzahl von Farben und Designs anbieten.

2. EIGENSCHAFTEN

- Sehr gute optische Eigenschaften
- Brillante Oberfläche
- Einfache Be- und Verarbeitung, gute Thermoformbarkeit
- Hervorragende Lichttransmission und Transparenz, GUTE LICHTSTREUUNG BEI WEISS EINGEFÄRBTEN PLATTEN
- Die Standard Tafeln zeigen gute Widerstandsfähigkeit gegen mechanische Beanspruchung der Oberfläche
- Gut recyclebar
 - CRYLON® und CRYLON® schlagzäh modifiziert und ihre Einfärbungen sind nach europäischen Regularien für den Einsatz mit Lebensmitteln zugelassen

3. ANWENDUNGEN

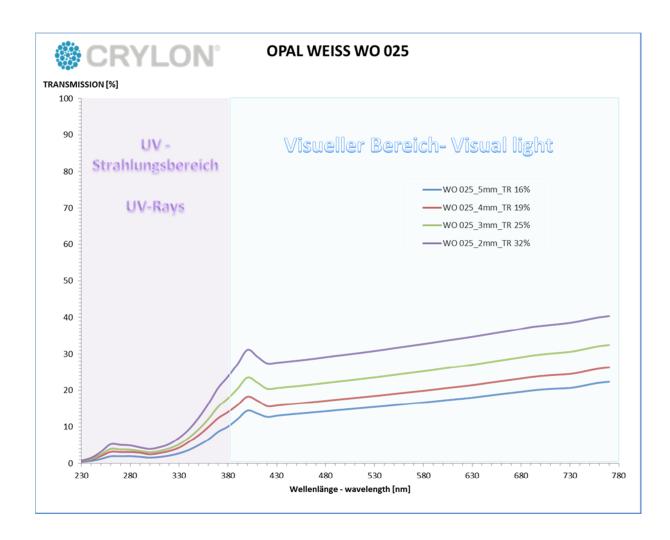
- BAUELEMENTE
- Lichtkuppeln
- Trennwände
- Tür- und Torverglasung
- Dachverglasung
- Dächer und Fenster für Caravans
- Lärmschutzwände
- BELEUCHTUNG
- Leuchtenabdeckungen
- Signalausrüstung
- Kassettenleuchten
- KüchenbeleuchtungLeuchttafeln

- WERBUNG UND DEKORATION
- Buchstaben
- Displays
- Lichtwerbung
- Plakate
- ANDERE ANWENDUNGEN
- Behälte
- Beschriftungsschablonen
- Solarien (UV-durchlässige Sondertype XT UVT)
- MASCHINENBAU
- Gehäuse
- Abdeckhauben

4. FERTIGUNGS-UND ENDBEARBEITUNGSTECHNIKEN

CRYLON® und CRYLON® Schlagzäh modifizierte wie auch eingefärbte Platten lassen sich leicht, mit den üblichen Verfahren wie Sägen, Bohren, Polieren, Fräsen etc. bearbeiten und sind gut thermoformbar.

Ausführliche Informationen hierzu gibt es in den "Verarbeitungshinweisen CRYLON®" und werden auf Anfrage zur Verfügung gestellt.



1/3

TECHNISCHES DATENBLATT

Opal Weiß 025

TECHNISCHES DATENBLATT

Opal Weiß 025

6. TECHNISCHE DATEN

	Methode	Einheit	CRYLON®	
igenschaft			opal weiß 025	
Dichte	ISO 1183	g/cm³	1.19	
Wasseraufnahme	DIN EN ISO 62	%	0.2	
24h/23°C – 50x50x4mm³	Methode 1			
Kugeldruckhärte	ISO 2039-1	MPa	235	
Verformungstemperatur für Druckluft		°C	140-160	
Verformungstemperatur für Vakuum		°C	160-190	
Verarbeitungsschwindung		%	0.5-0.8	
MECHANISCH				
Zugfestigkeit	ISO 527-2	MPa	70	
Reißdehnung	ISO 527-2	%	4	
Zug E-Modul	ISO 527-2	MPa	3200	
Biegefestigkeit	ISO 178	MPa	115	
Biege E-Modul	ISO 178	MPa	3300	
Schlagzähigkeit Charpy	ISO 179-1	kJ/m²	17	
Kerbschlagzähigkeit Charpy	ISO 179-1	kJ/m²	2	
THERMISCH	.00 1/0 1	,		
Vicat Erweichungstemperatur (B 50)*	ISO 306	°C	105	
Spezifische Wärmekapazität	ISO 11357-4	J/gK	1.47	
Thermischer Längenausdehnungskoeffizient α	DIN 53752	mm/m °C	0.07	
Wärmeleitfähigkeit	DIN 52612	W/mK	0.18	
Dauergebrauchstemperatur		°C	70	
Max. Temperatur kurzzeitig		°C	90	
Zersetzungstemperatur		°C	>280	
OPTISCH			- 200	
Lichtdurchlässigkeit	DIN 5036-3 /	%	32 (2mm) 16 (5	5mm)
_iontaar omassignen	EN ISO 13468-2	70	, ,	6mm)
			19 (4mm)	
Brechungsindex	ISO 489	n ^D ₂₀	1.492	
ELEKTRISCH				
Oberflächenwiderstand	IEC 60093	Ω	3x10 ¹⁵ - 3x10 ¹⁶	
Spez. Durchgangswiderstand	IEC 60093	Ωxm	1x10 ¹³ - 5x10 ¹³	
Kriechstromfestigkeit	IEC 60243-1	kV/mm	10	
Durchschlagfestigkeit	IEC 60243-1	kV/mm	30	
Dielektrischer Verlustfaktor 50 Hz	DIN 53483-2	KV/111111	0.06	
Dielektrischer Verlustfaktor 1 KHz	DIN 53483-2		0.04	
Dielektrischer Verlustfaktor 1 MHz			0.02	
Dielektristiätszahl 50 Hz	DIN 53483-2		2.7	
DIEIEKTIIZITATSZAIII 30 IIZ	DIN 53483-2			
Dielektrizitätszahl 1 KHz	DIN 53483-2		3.1	

^{*}Vorbehandlung 16h bei 80°C

geringfügigen produktionsbedingten Schwankungen.